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Abstract
Objective. We show that electroencephalography (EEG)-based cognitive load (CL) prediction using
Riemannian geometry features outperforms existing models. The performance is estimated using
Riemannian Procrustes Analysis (RPA) with a test set of subjects unseen during training. Approach.
Performance is evaluated by using the Minimum Distance to Riemannian Mean model trained on
CL classification. The baseline performance is established using spatial covariance matrices of the
signal as features. Various novel features are explored and analyzed in depth, including spatial
covariance and correlation matrices computed on the EEG signal and its first-order derivative.
Furthermore, each RPA step effect on the performance is investigated, and the generalization
performance of RPA is compared against a few different generalization methods.Main results.
Performances are greatly improved by using the spatial covariance matrix of the first-order
derivative of the signal as features. Furthermore, this work highlights both the importance and
efficiency of RPA for CL prediction: it achieves good generalizability with little amounts of
calibration data and largely outperforms all the comparison methods. Significance. CL prediction
using RPA for generalizability across subjects is an approach worth exploring further, especially for
real-world applications where calibration time is limited. Furthermore, the feature exploration
uncovers new, promising features that can be used and further experimented within any
Riemannian geometry setting.

1. Introduction

Under strenuous conditions of increased demands,
i.e. extensive need for memory resources, the brain
experiences high so-called cognitive load (CL). The
CL Theory provides a model of the brain under
such working memory capacity limitation [5]. In
this context, CL is defined as the amount of work-
ing memory resources used at a particular point in
time. It can further be seen as a bottleneck for learn-
ing processes [61]. Accurate real-time CL estimates
thereby allow for a better understanding of the path-
ways that enable learning in the brain [52], and
for an expanded understanding of some learning
disorders and disabilities [21].

Numerous works have attempted to predict the
CL experienced by an individual using electroenceph-
alography (EEG) [5, 22, 50]. EEG is useful in this

endeavor as it is not invasive, cheap, accessible, and
affords high temporal resolution.

Despite the abundance of prior works aiming at
predicting CL, prediction performances remain low.
This is primarily due to challenges stemming from the
high signal variance across subjects and recording ses-
sions, whichmake the divergence high [23]. Advances
in feature extraction methods coupled with machine
learning (ML) models have attempted to address
the variance challenges [14, 51]. Furthermore, recent
emerging techniques in the realm of transfer learn-
ing (TL) offer additional solutions to the inter-subject
variability challenges [55].

The goal of this work is to investigate and evaluate
different feature extraction methods and model con-
figurations to predict CL. We focus on Riemannian
Procrustes Analysis (RPA) [46], a TL approach
that matches different subjects’ data distributions in
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Riemannian space. The method performs unsuper-
vised centering and stretching operations, followed by
a supervised rotation step that needs some calibration
data for each new subject. Riemannian geometry has
been demonstrated to work well in a number of EEG-
related tasks that use spatial covariance matrices as
features spanned over the EEG channels [1, 18, 57].
We assess the generalizability of themodel by predict-
ing CL on data from a subject unseen during training.
Finally, we investigate the effect of different features
on the classification performance and compare our
classifiers to traditional non-TL approaches.

We formalize our contributions by addressing the
following research questions:

(i) RQ1: Is a supervised calibration step (rotation)
required to achieve high accuracy using RPA?

(ii) RQ2: Are covariance matrices the best features
for RPA?

(iii) RQ3: What is the trade-off between the amount
of supervised calibration data necessary and the
RPA accuracy?

(iv) RQ4: How does this trade-off compare to other
modeling approaches for classifiers, when tested
on unseen subjects?

Our work provides an experimental demonstra-
tion of RPA application in CL prediction. We carry
out an extensive exploration of features suitable for
this method, identifying novel representations that
improve results obtained using RPA. Finally, we
provide a comparison of the performances obtained
using RPA with that of other models using non-TL
approaches.

2. Related work

2.1. CLmeasurement and EEG
Increased CL can be identified through various
means. Those include physiological measures (e.g.
pupil dilation [24], or heart-rate variability [49]), task
performance decrease, or reaction time, to name a
few [5]. Attempts to measure or predict CL using
neural signals have focused on EEG readouts [22,
50] due to their high temporal resolution and non-
invasive nature. A large subset of themeasures use sig-
nal frequency fluctuations as a direct CL estimate [4],
whereas others use the EEG as an outcome variable
reflecting the emergence of CL [41, 50].

The ability to detect and characterize various
mental states using EEG is an extensively researched
topic. Among the mental states frequently investig-
ated are those depicting high and low levels of CL.
The main frequency bands implicated with CL are:
theta [3.5,7.5] Hz, alpha [7.5,12.5] Hz and beta
[12.5,30]Hz. Frontal theta band activity was found to
increase proportional to the difficulty of the task [5,
17, 48], but decrease when new information is pro-
cessed [34]. The alpha band activity was shown to

strongly decrease when subjects shift from eyes closed
to eyes open, making it a useful feature for dis-
tinguishing between these two states [11, 39]. The
alpha band was also shown to correlate with per-
ceived CL through a decrease in activity in the regions
involved in the processing of a task, notably the
fronto-temporal region [16, 17, 33, 48]. Finally, stud-
ies have shown that increased beta power is linked
with increased CL [16, 34, 48] but the functional role
of this band is not clear [17].

One challenge with EEG data is its inter-subject
variability [23]. This variability makes it difficult to
infer EEG properties that are valid across subjects.
Furthermore, training ML models on EEG such that
they can generalize to unseen subjects has proven
challenging. This, in turn, leads researchers to often
train individual models for each subject [22, 50]. The
latter approach has the natural drawback of being
idiosyncratic and thereby less suitable for real-world
applications.

2.2. TL
TL is a general term for a set of techniques aiming to
improve the performance of an ML model on a task
by using knowledge from a related, previously learned
task [53]. A variety of TL methods have recently been
explored and used in EEG research [55].

As one aim of this work is to overcome the chal-
lenge of inter-subject variability, the usage of TL
becomes essential. Specifically, we use subspace learn-
ing to find a model that generalizes across subjects,
by identifying a transformation between each sub-
ject’s data that maximizes the inter-subject similarity
in terms of class distribution. To intuit the concept, we
offer the following explanation: in Euclidean space,
the Procrustes Analysis algorithm [25] uses center-
ing, stretching, and rotation operations to transform
datasets. In the context of brain-computer inter-
faces (BCIs), a RPA method extends the Euclidean
algorithm to the Riemannian manifold [46] P(n)
using symmetric positive definite (SPD) matrices C

P (n) =
{
C ∈ Rn×n | CT = C,xTCx> 0,∀x ∈ Rn

}
.

(1)
Simply, each subject’s data is regarded as a differ-

ent dataset D ∈D (the set of all subjects). Unlike in
the original RPAdefinition provided by [46], there are
more than two datasets involved. The source space S
is now the union of all datasets except for one selec-
ted subjectDT. This subject’s dataset is considered the
target space T

S = {(Ci,yi) for i = 1, . . . , |DS| for DS ∈D\{DT}} ,

T =
{(

C̃i, ỹi
)
for i = 1, . . . , |DT|

}
, (2)

where Ci, C̃i ∈ Rn×n are data points, and yi, ỹi ∈
{1, . . . ,L} are their class labels. All datasets in both
source and target spaces are first re-centered around
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Figure 1. Overview of RPA processing results after each step. This example imagines a situation with four subjects (colors) and
two classes (markers). Each subject has 40 randomly generated 2× 2 SPD matrices as data points per class. The green subject is
selected as target space and the other three subjects are part of the source space. The data points are projected to a 2-dimensional
plane using spectral embedding for the purpose of visualisation, but all RPA operations are performed in the Riemannian space.
The left-most plot shows the initial state of the data. The second plot visualises the data recentered around the identity matrix.
Next comes the data after the stretching step. Finally, the right plot is the data obtained after the rotation step.

the origin of a Riemannian space, which is the iden-
tity matrix In, using the geometric mean MD of each
dataset:

C(rct)
i =M−1/2

D CiM
−1/2
D

for i = 1, . . . , |D| for D ∈D.
(3)

Following, each set is stretched to reach a unit dis-
persion:

δ2R

(
C(str)
i , In

)
=

1

s
δ2R

(
C(rct)
i , In

)

for i = 1, . . . , |D| forD ∈D,
(4)

where δ2R
(
Ci,Cj

)
=
∑n

k=1 log
2 (λk) is the Riemannian

distance between Ci,Cj ∈ P(n) defined using the
eigenvalues λk of C−1

i Cj, and the dispersion s=∑
Ci∈D δ

2
R (MD,Ci). Note that this stretching to unit

dispersion differs from the original RPA algorithm
proposed in [46] to accommodate a source space
composed of multiple datasets. Finally, each dataset
from the source space is rotated such that its class
distributions reach maximum overlap with the target
space’s class distributions:

C(rot)
i = UT

DC
(str)
i UD

for i = 1, . . . , |D| for D ∈ S, (5)

where the orthogonal matrix UD is obtained by
optimizing the following objective:

minimize
UT

DUD=In

L∑

k=1

δ2R

(
G̃k,UDGkU

T
D

)
(6)

where k ∈ L are all classes present in the data. Gk

and G̃k are defined using the geometric mean M of
all recentered and stretched matrices from D, M̃ of
recentered and stretched matrices of T , and the class-
wise meansMk and M̃k defined as follow:

Mk = G
(
C(str)
i | for i = 1, . . . , |D|and yi = k

)
,

M̃k = G
(
C̃(str)
i | for i = 1, . . . , |T |and yi = k

)
,

(7)

so that

Gk =M−1/2MkM
−1/2,

G̃k = M̃−1/2M̃kM̃
−1/2.

(8)

Intuitively, equation (6) minimizes the
Riemannian distance between the geometric mean of
the same class in D and T , averaged across all classes.
Note that in the original RPA definition from [46], a
weighting term wk ∈ [0,1] in equation (6) allows to
weight each class separately. Also, unlike in the ori-
ginal RPA where the target space is rotated to match
the source space, here all datasets within the source
space are rotated individually to match the target
space. Any dataset from the source space could have
been chosen as reference instead of the target space,
it would have been mathematically and conceptually
equivalent.

As previously mentioned, all equations presented
in this section are taken from [46] and adapted for
the case where the source space is composed of mul-
tiple datasets, as implemented in the python library
Pyriemann [8] used in this work to perform RPA.
For further details, the mathematical basis of RPA
is defined extensively in [46]. Figure 1 visualises all
RPA steps performed on randomly generated data for
example purposes.

Riemannian geometry has recently achieved
impressive performance and robustness in BCI
applications [1, 18, 29] as well as in CL evalu-
ation [57]. Here, we explore the possibility of using
RPA in the Riemannian space as the TL method to
align the subjects, in turn easing the classifier’s task
of predict CL on an unseen subject.

2.3. EEG features
2.3.1. Standard EEG features
The most common practice in EEG decoding is to
utilize statistical features derived from the raw input
signals. This is despite the fact that some deep neural
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models (i.e. EEGNet) actually use the raw or filtered
time-series signals as direct input [37].

The typical features extracted from the raw signal
reflect time-domain properties, frequency-domain
properties (i.e. absolute and relative powers extrac-
ted using multitaper analysis) [17, 32], or time-
frequency-domain ones [14].

While these features are typically derived directly
from the raw EEG signal, they can also be extracted
froma transformed signal (e.g. a derivative of the EEG
input) [28, 54].

2.3.2. Riemannian features
RPA requires SPD matrices as features, commonly
referred to as Riemannian features. The standard
choice for Riemannian space EEG features are the
spatial covariance matrices [35, 47]. These matrices
have proven to be efficient in EEG decoding both
when using Riemannian geometry [10, 46, 62] as
well as Common Spatial Patterns [51, 60]. Notably,
these covariance matrices do not hold any temporal
information since shuffling the spatial signal over
the time dimension does not change the covariance.
Given that ERP classifications are time-dependent,
this loss of temporal information could prove chal-
lenging in some analyses [18], but does not pose any
problem in our work because CL is not time-locked
but rather evolves over continuous time windows.

Several works have tested optimal kernels for the
projection of SPD matrices to related spaces [13, 40,
59]. Alternatively, contending algorithms have tried
to simplify the covariance matrices by using specific
signal processing techniques [58] or post-processing
of methods [60].

3. Methods

This section provides all information about methods
used in this work to acquire and pre-process data for
the analyses and experiments, which are summarized
in figure 2. It also provides all information concerning
experimental designs andmodel training procedures.

3.1. Experimental design
Neural signals were acquired as part of a broad
endeavor to generate a large corpus of data for various
analyses. The endeavor, termed ‘Mantis’ was a collab-
oration between Logitech and the Liminal Collective4

with the aid of the Xperi research group. We recor-
ded 100 subjects, but due to the large dataset size, only
a randomly selected subset of 40 subjects is used for
the analyses and experiments carried out. The ana-
lysis of the remaining subjects is left for future work.
Among the 40 randomly selected subjects, there are
23 men and 17 women. The youngest subject is 20
years old and the oldest 71. The median age is 27,
the average age 30.7 with a standard deviation of 11.4

4 www.liminalcollective.co/.

years. Handedness of subjects was not collected dur-
ing acquisition.

Subjects sat in a driving simulator and performed
cognitive tasks (resting baseline, Flanker [56] for
attention, N-back [30] for memory, simulated driv-
ing, NASA-TLX [27] for subjective CL reporting)
during four distinct sessions. Each session lasted 40
min (table 1), but only the first session’s data for
each subject, and only the resting baseline andN-back
tasks, were used for the analysis and experiments.

The 4 min baseline (2 min eyes-closed and 2
min eyes-open) in the beginning of the sessions was
used for calibration and control in further analyses.
The main CL task, N-back, aimed at exercising work-
ing memory at increasing levels of difficulty [30].
Increasing CL was introduced through the escalating
task demands. The subject was shown a sequence of
patterns (100 milliseconds stimulus presentation fol-
lowed by a 3 s fixation cross) and is asked to determ-
ine whether the most recent stimulus matches the
one shownN (∈ 0,1,2,3,4,5) positions earlier in the
sequence. N = 0 meant that the subject had to com-
pare each pattern to the very first one in the sequence.
We perform 20 continuous trials for each value of N,
each trial consisting of displaying one of the 8 pos-
sible N-back patterns shown in figure 3 and record-
ing the subject’s match/no match response. Subjects
answered by pressing one of two buttons (match/no
match) for all N values, in order to reduce the mus-
cular and ocular artifacts differences between condi-
tions. Subjects passed the N-back tests in two blocks:
first N ∈ {0,2,4}, then N ∈ {1,3,5}, as shown in
table 1. In other words, they performed 20 tasks
of 0-back, followed by 20 tasks of 2-back and 20
tasks of 4-back. After a break they did the same
for N ∈ {1,3,5} .

Physiological data was acquired simultaneously.
The data comprised of biometrics time series and
high-quality video. The biometric data included EEG,
EKG, EOG, SpO2, GSR, and temperature time series.
Only EEG data is used in this work.

EEG signals were recorded at 500 Hz sampling
rate with a wireless Enobio 32 EEG system
(Neuroelectrics) [20]. This device consists of 32 gel-
based electrodes, and has been used in previous stud-
ies related to CL prediction [2, 3]. The channel used
for the analyses are: Fz, Pz, F7, P7, F8, P8, C3, C4,
F3, F4, P3, P4, Fp1, O1, Fp2, O2. Those electrodes
were selected to ensure a coverage across the entire
scalp [23, 31].

All subjects signed an informed consent form
according to the declaration of Helsinki. The study
protocol was approved by the Xperi Research Ethics
Committee.

3.2. EEG signals pre-processing
EEG data was first downsampled to 250 Hz.
Following, a notch-filter at 50 Hz (FIR filter, 6.6 s

4
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Figure 2.Overview of all data acquisition and pre-processing carried out in this work. The data processing steps are split in several
categories for easier understanding. The figure also shows from which processing step the data is taken for the analyses and
various classification experiments.

Figure 3. An N-back pattern consists of a white square
appearing at a given location within the black square.
This figure displaying the 8 possible N-back patterns
the subject can be presented with at each N-back trial.
During fixation time between pattern display, only the
black square with the white fixation cross in the middle
remain on screen.

Table 1. First session tasks and the time each of them lasts. Time
flows from the top to the bottom of the table.

Task Time (min.)

Eyes closed 2
Eyes open 2
Break 2
Flanker 1
Break 2
N-back (N ∈ {0,2,4}) 3
Break 2
N-Back (N ∈ {1,3,5}) 3
Break 2
Driving 20
NASA-TLX 1
Total 40

length) was applied and a PREP pipeline [12] for
automatic channel removal was executed. An average
of 3.9 out of 32 channels were rejected per subject,
with a standard deviation of 2.5. Rejected channels

were then interpolated with spherical spline inter-
polation from surrounding channels. Finally, signals
were re-referenced to a common average.

To prepare the data for ML modeling, it was split
into epochs (5 s window, 1 s step). These epochs are
evenly spaced and do not match with particular N-
back trial timings. For example, an epoch might con-
tain the final seconds of one trial and the beginning
seconds of the next trial. An IndependentComponent
Analysis (ICA) over a band-pass filtered copy of the
data (in the 1–100 Hz. range, FIR filter, 3.3 s length)
was calculated. ICLabel [44] was then used to identify
brain and artifact components. Next, the original data
was reconstructed using the ‘brain’-labeled compon-
ents alone, effectively eliminating as many artifacts
from muscular, ocular and other undesired sources
as possible. The epochs were band-pass filtered (0.5–
30 Hz. range, FIR filter, 6.6 s length) and cropped
to 1 s windows with no overlap by trimming away
two seconds from the start and the end of the sig-
nal respectively. Finally, noisy epochs were removed
if their peak-to-peak amplitude was higher than 150
uV in any of the channels.

3.3. Labelling
To determine the CL ground truthwe used the object-
ive task difficulty estimate (rather than the subject-
ive NASA-TLX reporting [5]). We assumed that more
difficult tasks yield higher CL, as was shown in prior
works [57]. Specifically, we used the difficulty of the
N-back task as CL score. N-back conditions withN ∈
{0,1} were deemed low CL, N ∈ {2,3} were deemed
mediumCL, and N ∈ {4,5} were deemed high CL.

To validate the labelling, we estimated the N-
back accuracy (see section 4.1). Overall, the median
accuracy in % for the tasks was 85.00, 92.50, 67.50,
65.00, 60.00, 56.32 for N ∈ {0,1,2,3,4,5} respect-
ively. Two subjects performed below 12.5% (which
corresponds to chance-level performance) on all N-
back tasks combined andwere excluded from the ana-
lyses, as such poor performance indicates they might
have misunderstood the task. This leaves 38 subjects
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for the analyses and experiments. The accuracy dif-
ferences between the low, medium and high CL con-
ditions was tested with a paired Wilcoxon signed-
rank test, given that the accuracy distributions were
skewed. The Bonferroni correction for multiple com-
parisons was used.

3.4. Features
Two types of features were extracted for the analyses:
(1) standard features (i.e. time-domain features), and
(2) Riemannian features, i.e. SPD matrices. The lat-
ter ones are necessary for the RPA. Table 2 lists all the
standard features and table 3 the Riemannian ones as
well as the motivation behind the choice of each.

The standard features chosen were selected due to
their commonusage for prediction using EEG in vari-
ous contexts.

Spatial covariancematrices were computed in line
with existing protocols [10, 46, 60, 62]. Correlation
matrices (normalized to [−1,1]) were generated by
dividing the covariancematrices by the standard devi-
ation of each signal.

The raw signal’s derivative was obtained from the
difference between consecutive recording samples in
each channel: x ′i = xi+1 − xi. We repeated this deriv-
ation method once, twice or three times for the
first, second and third order derivative of the signal
respectively. This derivative operation could be inter-
preted as a filtering operation where high frequencies
are emphasized.

To combine multiple Riemannian features, the
SPD matrices of each individual feature were com-
bined into blockmatrices by placing the SPDmatrices
in the top-left to bottom-right diagonal of a gener-
alized matrix, and filling the remaining entries with
zeros. The resulting block matrix was guaranteed to
be SPD as well since it is a square matrix and the
bag of eigenvalues of the block matrix is the union
of the bags of eigenvalues of each matrix composing
it. The block matrix allowed for an investigation of
the information complementarity in the signal cov-
ariance and its derivative. Similar block matrix was
generated from the correlation matrices.

Riemannian features on specific power bands
were extracted from the band-pass filtered raw signal
in the theta, alpha and beta bands, respectively. Band-
pass filtering occurred before the derivation process.
Delta band was not investigated because the out-
put was too close to symmetric positive semi-definite,
which computationally violates the RPA algorithm
requirements.

3.5. Training
3.5.1. Models
Minimum Distance to Riemannian Mean model
(MDM [9]) was used for the training. This met-
ric derives the Riemannian mean of each class and
assigns every data point to the nearest class mean.
Class means are computed using all data points

belonging to that class from all datasets of the source
space after alignmentwith the target space. The points
from the target space were not used in the class means
computation. This classification ensures that the out-
put remains within the Riemannian space, requires
little computation, and is robust to noise thanks to
the usage of geometric means [19]. This provides a
useful baseline for the RPA performances.

To assess the MDM performance, we com-
pared the classification to two traditional meth-
ods: 1) support vector machine (SVM) with a
radial basis function (RBF) kernel and balanced
class weights, and 2) EEGNet [37] with paramet-
ers F1 = 8,D= 2,F2 = 16,C= 16,T= 250,p= 0.5,
kernel length= 64, batch size= 256. EEGNet was used
twice, with different tuning steps (see section 3.5.4).

3.5.2. Experiments
Multiple tests were conducted to assess the perform-
ance obtained using RPA, evaluate each model’s gen-
eralisability across subjects, and address the four
research questions stated in section 1.

Specifically, to address RQ1, we performed a pro-
cessing experiment where we compared the perform-
ance of various RPA operations on the standard cov-
ariance of the signal samples. To address RQ2we per-
formed a features experiment where we used the RPA
model with the various features extracted.

Finally, to address RQ3 and RQ4 we conducted
a calibration experiment where we used the covari-
ance of the signal derivatives as features. Here, we
trained the models using varying amounts of samples
for each class. Then, we compared the output to the
ones obtained by including this calibration data in the
training procedure of other models.

Performance was assessed by testing the accuracy
of the classification of the following states displayed
in table 4: (1) baseline eyes open versus baseline eyes
closed (named reference task), (2) baseline eyes open
versus any of the CL states (named activity presence
task), (3) low versus high CL, (4) low versus medium
CL and 5) low versus medium versus high CL. For
tasks (3) and (4), only data from N-back with N ∈
{0,2,4} is used for classification, because samples
acquired in the same block, i.e. acquired closely in
time, are harder to distinguish from each other and
a challenge closer to real device usage which we chose
to address. For task (5), there were very few sub-
jects that had at least 40 samples in all three tasks
if only data from N ∈ {0,2,4} was used. Therefore,
data from allN ∈ {0,1,2,3,4,5}was used in this case.
We computed chance level for comparison by ran-
domly shuffling the labels of samples before start-
ing the training procedure, and averaging the testing
accuracy over all subjects. The chance level is com-
puted 20 times and the 95th percentile is reported.
This was done for all tasks using the most perform-
ant features in the features experiment.
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Table 2. Table listing all standard EEG features extracted from clean EEG Epochs for classification. The number of features per sample
depends on which kinds of features (listed in the ‘Feature names’ column) are extracted and from how many channels or channel pairs
(listed in the ‘Channels’ column) they are extracted.

Category Feature names Frequency ranges Channels #Feat. / sample

Time-Domain (TD) Mean, Variance, Skewness,
Kurtosis, Sample Entropy
(SE) [45], Hjorth
parameters (activity,
complexity &
mobility) [28], Detrended
Fluctuation Analysis
(DFA) [15]

[0.5, 30] Hz Each of the 16
channels

144 (= 64 for the
four moments of
distribution+ 16
for SE+ 48 for
Hjorth+ 16 for
DFA)

Frequency-Domain (FD) Absolute power bands,
Relative power bands

Delta: [0.5, 3.5] Hz
Theta: [3.5, 7.5] Hz
Alpha: [7.5, 12.5] Hz
Beta [12.5, 30] Hz

Each of the 16
channels

128

Dual Channel Pearson’s R coefficient,
Time-lagged
cross-correlation, (TLCC)
offset [15], TLCC
maximum Pearson’s
R [15], Dynamic Time
Warping (DTW) [15]

[0.5, 30] Hz (Fz, Pz), (F7,
P7), (F8, P8),
(C3, C4), (F3,
F4), (P3, P4),
(Fp1, O1),
(Fp2, O2)

32

Table 3. Table listing all Riemannian features extracted from clean EEG Epochs for classification. Each Riemannian feature named is
computed over all 16 channels at once and producing a single matrix per sample.

Feature names Frequency ranges Motivation

Covariance (Cov) of the signal [0.5, 30] Hz Default SPD matrix features for RPA.

Correlation (Corr) of the signal [0.5, 30] Hz ‘Standardized’ covariance matrix.

Cov of first order signal
derivative

[0.5, 30] Hz Extract variance information from signal changes
instead of the plain signals.

Corr of first order signal
derivative
Cov of second order signal
derivative
Cov of third order signal
derivative

Cov of the signal+ Cov of its
first order derivative

[0.5, 30] Hz Investigate complementary information from signals
and their derivatives.

Corr of the signal+ Corr of its
first order derivative

Cov of the first order derivative
of the signal on Theta band

[3.5, 7.5] Hz Investigate the role of each band for CL prediction.
Could not be run for Delta band due to matrices being
too close to symmetric positive semi-definite.Cov of the first order derivative

of the signal on Alpha band
[7.5, 12.5] Hz

Cov of the first order derivative
of the signal on Beta band

[12.5, 30] Hz

The Python code for the classification was
built primarily on the following libraries: (1)
MNE [26, 36], Pyprep [6] and EEGLib [15] for
basic EEG signal processing, (2) ICA-Label [38]
for ICA calculation, (3) Pyriemann [8] for covari-
ance matrices computations as well as RPA and the
MDM model in the Riemannian space, (4) scikit-
learn [43] for the ML computations outside the
Riemannian space, (5) Tensorflow [7] for EEGNet

implementation, and (6) Numpy, Pandas and
Seaborn for statistical analyses and visualizations.

3.5.3. Processing and features experiments procedure
The training procedure was designed to mimic a
likely real device usage. We performed a Leave-One-
Out Cross-Validation (LOOCV) training, i.e. train-
ing on n− 1 subject and testing on the last subject,
using each subject once as a test subject. Reported
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Table 4. Table listing names and classes included for each
classification tasks. It also shows how many subjects and samples
were involved in total in each classification task after discarding
subjects with less than 40 samples per class.

Name Classes # Subjects # Samples

Reference 1. Baseline eyes
closed

2. Baseline eyes
open

33 7496

Activity
presence

1. Baseline eyes
open

2. Any CL state

33 7558

Low vs. High
CL

1. Low CL (0-back)
2. High CL

(4-back)

20 2220

Low vs.
Medium CL

1. Low CL (0-back)
2. Medium CL

(2-back)

24 2616

Low vs.
Medium vs.
High CL

1. Low CL
(0&1-back)

2. Medium CL
(2&3-back)

3. High CL (4&5
back)

33 9135

accuracies are the average performance across all runs
with a given configuration.

The training set, i.e. the source space, is there-
fore composed of n− 1 subjects, each bringing one
dataset. The last subject is the test subject. Since TL
requires calibration for each new subject, we split the
test subject’s data into two sets. The first set acted as
the calibration set, equivalent to the target space. It
was used to compute the transformations to apply on
the data of each subject from the training set tomatch
the test subject’s data. The second set was used for
testing, and only the centering and stretching oper-
ations computed for the calibration set were applied
on that testing set, no rotation is performed (figure
4). The calibration set is neither used for training nor
for testing. It is used solely to compute the mappings
to perform on the datasets in the training set and
on the testing set. Inverse transformations between
each source space and the target space could be found
with identical results, ensuring that the choice of
using the calibration set as target space rather than
any of the training set subjects did not affect the
performance.

In the processing and features experiments, a fixed
number of 10 randomly selected samples from each
class is used as calibration set. As the data contains
varying numbers of samples per subject and class,
each classification task was evaluated independently.

Figure 4. Diagram depicting the training setup in the case
where the nth subject is used as test subject, and subjects 1
to n− 1 are used as training set. Note that the calibration
subset from subject n, which corresponds to the target
space, is used to identify the RPA transformation to apply
on the datasets in the source space. The centering and
stretching operations computed for the calibration data are
also applied to the samples in the test subset of subject n,
resulting in the final test set. The calibration subset is not
used for testing.

For a given task, subjects with less than 40 samples in
each class were excluded from that task to avoid the
risk of overfitting. Since 10 samples per class from the
test subject’s data are used as calibration set, it must
be ensured that there are enough samples remain-
ing in the test set to avoid the risk of overfitting the
test set when the training subjects are matched to the
calibration set. A test set that is too small is more
likely to have extremely well overlapping data dis-
tributions with the calibration set. The 40 samples
per class constraint resulted in varying numbers of
subjects across tasks, as some subjects had enough
data for some tasks but not for others. The num-
ber of samples was balanced within each subject but
not across subjects,meaning some subjects havemore
data than others for the same task. The final num-
ber of subjects and samples for each task is listed in
table 4.

Given that we used an MDM model, the inter-
subject imbalance of samples did not impact the res-
ults’ robustness. Intra-subject imbalance of samples
does not have a large impact either, as RPA and the
MDMmodel are computed using classmeans, but the
number of samples per class was still balanced within
each subjects to follow good ML practices. Finally,
also note that as soon as there are more than a few
subjects in a training set, the exact number of subjects
has little impact on the classification performance
obtained with the MDM model on the test set. This
is because the data from each subject is matched by
maximising overlap of class distributions, therefore
all training subjects have similar distribution in data.

3.5.4. Calibration experiment procedure
A calibration experiment was conducted for each
number of samples n_cal ∈ {1,3,5,7,10,15,20} per

8
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Figure 5. N-back performance for the 38 subjects by N
value (left) and CL label (right). Bonferroni-corrected
significance levels in the right plot, computed with a
Wilcoxon signed rank-sum test, denote ns: p> 0.05, ∗: 0.05
> p> 0.01, ∗∗: 0.01> p> 0.001, ∗ ∗ ∗: 0.001> p>
0.0001, ∗ ∗ ∗∗: 0.0001> p.

class. The limit of 20 samples ensured no over-fitting
(with a minimum of 40 samples per class).

LOOCV was conducted for each n_cal value,
along with the following steps for each n_cal and
test subject pair. Specifically, subjects and samples
were first selected and the covariance of the signal
derivatives were computed. Following, the samples
were calibrated using RPA and the MDM model was
trained and tested. Next, the standard EEG features
were extracted from the same samples and the data
was normalized. The training and calibration sets
were used to fit an SVM model and the perform-
ance was calculated using the test set. Finally, the raw
EEG signals were used for training, tuning, and test-
ing of the two EEGNet models. Both EEGNet mod-
els were trained on the training set with a learning
rate of 0.001 over 50 epochs. The fine-tuned EEGNet
was subsequently trained on the calibration set with a
learning rate of 0.0005 over 10 epochs. The over-fitted
EEGNet was tuned in an identical fashion, but over 25
epochs.

Notably, MDM and RPA were not compared
to the single-subject models as commonly done in
assessment of inter-subject variability [22, 23, 50].
This is because the aim of the work was to produce
a generalizable model rather than optimize the solu-
tion for a single subject.

4. Results

4.1. Behavioral data analysis
Subjects median accuracies with standard deviation
in%were 85.00± 32.02, 92.50± 27.83, 67.5± 29.07,
65.00± 25.44, 60.00± 26.64, 56.32± 24.38 for N ∈
{0,1,2,3,4,5} respectively. The mean accuracy for
each CL level was computed for each subject, giving
87.50± 26.47, 65.51± 25.43 and 56.17± 23.78 for
CL∈ Low,Medium,High. Using theWilcoxon signed
rank-sum test with Bonferroni-correction showed a

Figure 6.Mean reaction time for each subject in the N-back
task by N value (left) and by CL (right). Significance level
labels are the same as in figure 5.

significant difference across all pairwise comparisons
of CL levels. The most significant accuracy difference
was seen between low and high CL (T = 31.0, p =
0.00 006) and between low and medium CL (T =
73.5, p = 0.00 082). A significant difference was also
noted between medium and high CL (T = 129.5, p=
0.024). The accuracy in the tasks decreased with dif-
ficulty, in line with prior behavioral works.

Subjects median reaction times with standard
deviation in seconds were 0.71± 0.20, 0.88± 0.30,
1.10± 0.31, 1.25± 0.42, 1.23± 0.46, 1.34± 0.46 for
N ∈ 0,1,2,3,4,5 respectively. The mean reaction
time for each CL level was computed for each subject,
giving 0.82± 0.22, 1.19± 0.31 and 1.24± 0.43 for
CL ∈ Low, Medium, High. The reaction time showed
a similar trend as accuracies with significance differ-
ences between low and high CL (T = 53.0, p< 106)
and between low and medium CL (T = 73.5, p =
0.00 082). The reaction time difference between the
medium and high CL was not statistically significant
(T = 299.0, p = 0.92). This last observation can be
due to the fact that the participants had a time limit
to give an answer. All measures and statistical test res-
ults are reported in figure 6.

The differences found between the three con-
ditions motivated the distinction between the pro-
posed CL levels.We assume that participants undergo
these three different states during the experiment, and
attempt to classify them based on their EEG.

4.2. Evaluation of the method
We conducted three experiments aimed at address-
ing the four research questions investigated in this
work. The resutls of the processing experiment
(table 5) indicated that the maximal improvement
was achieved when including the last RPA step
(rotation).

The results of the features experiment (tables 6–
8) suggest that using the covariance of the first-
order derivative of the signal as features instead of
the covariance of the non-derived signal strongly
improves the model’s performance on all tasks.
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Table 5. Processing experiment results. Reported values are the mean± std in % of the model accuracies obtained using each available
subject once as test subject in a LOOCV fashion. Bold results depict the highest mean accuracy obtained in each column, indicating
maximal improvement is obtained when performing all RPA steps.

Task

Processing Reference Activity presence Low vs. High CL Low vs. Medium CL

Low vs.
Medium vs.
High CL

No RPA step 58.80± 13.13 52.61± 4.82 49.11± 8.55 50.55± 4.76 34.55± 2.64
Centering 75.35± 14.02 52.38± 13.38 52.80± 15.90 55.04± 9.91 36.30± 6.45
Centering+
stretching

76.23± 13.91 52.94± 13.33 52.68± 14.40 55.84± 9.98 35.64± 5.92

RPA (using cov) 68.81± 11.90 84.02± 10.22 66.08± 9.92 62.20± 11.26 42.47± 3.21

Table 6. Features experiment results for covariance, correlation, the sames on the signal’s first order derivative and the combination of
features extracted from the signal and its derivative. Reported values are the mean± std of model accuracies, in %, obtained using each
available subject once as test subject in a LOOCV fashion. Bolded results indicate the best mean accuracy obtained in each column, to
highlight maximum improvement in each task. It shows in all tasks that the covariance of the first order derivative yields the best results.

Task

Features Reference Activity presence Low vs. High CL Low vs. Medium CL

Low vs.
Medium vs.
High CL

Cov 84.02± 10.22 68.81± 11.90 66.08± 9.92 62.20± 11.26 42.47± 6.21
Corr 76.02± 11.97 61.71± 8.35 58.55± 10.27 56.39± 7.08 37.73± 5.03
Cov 1st order 87.80± 9.38 83.77± 10.22 78.59± 14.17 66.75± 12.48 46.60± 10.10
Corr 1st order 84.59± 9.23 76.10± 12.59 71.29± 12.33 63.30± 11.14 41.83± 7.00
Cov+ Cov 1st
order

86.35± 11.01 78.61± 11.03 71.22± 11.72 66.66± 10.87 44.93± 7.48

Corr+ Corr
1st order

81.97± 12.33 10.89± 11.27 70.62± 10.74 62.44± 10.79 40.84± 7.90

Table 7. Features experiment results obtained with the covariance on different derivative orders of the signal. Reported values are the
mean± std of model accuracies, in %, obtained again using each available subject once as test subject in a LOOCV fashion. It shows that
derivative order of the signal does not strongly impact the effectiveness of using the covariance as features.

Task

Features Reference Activity presence Low vs. High CL Low vs. Medium CL

Low vs.
Medium vs.
High CL

Cov 1st order 87.80± 9.38 83.77± 10.22 78.59± 14.17 66.75± 12.48 46.60± 10.10
Cov 2nd order 88.76± 7.87 82.31± 9.81 78.91± 13.18 67.01± 12.08 48.73± 9.05
Cov 3rd order 84.09± 10.32 84.80± 10.67 77.73± 14.38 67.56± 13.10 48.14± 9.00

Table 8. Features experiment results obtained with the covariance first order derivative of the signal on the full signal (first row) vs. on
specific bands (other three rows). Reported values are the mean± std of model accuracies, in %, once more obtained using each
available subject once as test subject in a LOOCV fashion. It shows that using the covariance on the first order derivative of the beta
band gives results closest to those obtained with the same feature computed on the full signal.

Task

Features Reference Activity presence Low vs. High CL Low vs. Medium CL

Low vs.
Medium vs.
High CL

Cov 1st order
(over all
bands)

87.80± 9.38 83.77± 10.22 78.59± 14.17 66.75± 12.48 46.60± 10.10

Cov 1st order
theta

74.96± 13.60 60.04± 9.18 57.87± 10.53 56.30± 5.64 37.24± 4.38

Cov 1st order
alpha

85.81± 11.94 65.12± 10.92 59.01± 10.23 55.93± 6.14 38.11± 5.61

Cov 1st order
beta

87.04± 8.57 83.65± 11.13 77.84± 12.95 68.46± 11.10 46.09± 7.42

However, using higher-order derivatives of the sig-
nal does not further improve the results. Finally, we
observe that most of the CL information retained
by these features come from the beta band of the
signal.

Additionally, when considering the distribution
of accuracies across all LOOCV models in each
task (figure 7) we see that the choice of test
subject strongly affects the performance of the
model.
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Figure 7. Distributions of accuracies by task obtained
during the features experiment, when using the covariance
of the derivative of the signal as features. For each task, each
available subject is used once as test subject. A bold, colored
horizontal line across each box entry column indicates the
95th percentile of the chance level testing accuracy across all
subjects for each task, provided for comparison of the
results to the chance baseline.

The results of the calibration experiment
(figure 8) show that only around 10 samples per class
allow to obtain good results. Furthermore, the com-
parison with other models shows that RPA allows
much better generalization to new subjects than the
other approaches investigated.

5. Discussion

We attempt to classify CL using novel Riemannian
features in a series of experiments using EEG data
obtained from subjects participating in a series
of cognitive tasks (namely, memory task in these
analyses). We show that RPA combined with MDM
models achieves good generalization to new sub-
jects and largely surpasses performances obtained
with our comparison models. Furthermore, our ana-
lysis uncovers that the feature choice is crucial, and
that using the covariance of the first-order derivat-
ive of the signal yields the best results, with an aver-
age performance of 83.77% on the activity presence
task. Evaluation of the method was done by address-
ing four questions using three experiments, which
we denote Processing, Features, and Calibration
experiments.

5.1. Processing experiment
In the processing experiment, detailed evaluation of
the drivers of the accuracy shows that not perform-
ing any RPA step on the samples yields close to ran-
dom accuracy on all tasks including the reference
(table 5). Interestingly, performing only the center-
ing step or both centering and stretching (i.e. stand-
ardization in the Riemannian space) without rota-
tion does not improve that performance (For ‘activity
presence’ task:−0.23% on the mean accuracy for the

former, +0.33% for the latter compared to no RPA
step). On the contrary, applying full RPA, including
the rotation step, to the data improves these results a
lot (+16.20% for ‘activity presence’ task).

The centering and stretching steps do not require
calibration data and therefore do not adapt specific-
ally to the target space. This can explain the big dif-
ference in performance when the rotation step is
included.

5.2. Features experiment
The features experiment investigated different kinds
of yet mostly unexplored Riemannian features.
Table 6 shows that the model accuracies using the
correlation as features consistently result in worse
performance than those using the covariance of the
same signal (for ‘activity presence’ task:−7.1% when
computed on the initial signal, −7.67% when com-
puted on the first-order derivative). No improvement
was expected fromusing the correlation alone, as RPA
already performs normalization in the Riemannian
space with its first two steps, centering and stretch-
ing. However, the results show that standardiza-
tion in the Euclidean space before normalization
in the Riemannian space actually yields poorer
performance.

Using the signal’s first-order derivatives to com-
pute features largely outperforms using the initial sig-
nal across tasks. This suggests that the signal’s first-
order derivative carries information related to the CL
states. The highest performance is shown using the
covariance of the first-order derivative (+14.96% for
‘activity presence’ task).

Using both the covariance of the signal and its
derivative does not further improve the results (for
‘activity presence’ task: −5.16% when using both
instead of only covariance on the first-order derivat-
ive). Rather, it produces accuracies that lie between
those obtained using the signal and its derivative, sep-
arately. The same holds for the correlation of the sig-
nal and its derivative. This suggests that the combined
feature sets are not informatively complementary.

Finally, the large standard deviations observed
highlight how differently models are performing
depending on the test subject used (figure 7). There
are a number of possible explanations for this vari-
ation. Recordings might contain variable levels of
noise, subjects can have more or less distinctly differ-
ent brain activities over varying CL states, or theymay
experience different intensity levels during the acquis-
ition [23]. These variations are likely not caused by
the trained models as the MDM model are robust to
those variations.

Using the features computed on higher-order
derivatives (table 7), we deduce that no large variation
in model accuracy can be achieved when increasing
the order (for ‘activity presence’ task: −1.46% for
the second-order compared to first-order, +1.03%
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Figure 8. Calibration experiment results. The number of calibration samples per class is depicted on the x-axis and the average
accuracy reached over all subjects used as test subject once (following LOOCV) on the y-axis. Each plot denotes results for one
task. Colors and line type correspond to different models. The covariance of the derivative of the full signal (i.e. over [0.5,30] Hz)
was used as features for the MDM classifier. Error margins are 95% confidence intervals computed from the results obtained
across different subjects for the same ncal value and model.

for the third-order). In other words, further emphas-
izing higher frequencies through additional derivat-
ive operations neither improves nor reduces classi-
fication performances. The accuracy remains stable
across all tasks when the order of the derivative is
increased. There only is a big gain in accuracy when
using the first derivative compared to the covariance
of the original signal, and this gain is maintained in
higher-order derivatives.

We observe in table 8 that the frequency band has
a significant impact on themodel accuracies obtained
for each classification task. Because the derivative of
a signal could be interpreted as a high-pass filtering
operation, it is expected that the information carried
in lower frequency bands is going to be affected.
We attempt to provide explanations for our results
using literature observations and our knowledge of
the features.

First, we notice that performances obtained using
the theta band are poor (for ‘activity presence’ task:
−23.73% compared to the covariance on all bands),
often falling close to random accuracies for all CL
tasks. We also observe rather poor performance on
the reference task compared to what can be achieved
with all bands (−12.84%) and evenwith standard fea-
tures such as band powers, suggesting our features are
simply inadequate to use on the theta band.While lit-
erature observes theta power increases during com-
plex tasks [17, 34, 48], our features are not able to
capture this difference sufficiently well for CL clas-
sification. A possible explanation is that variation in
the theta band are too weak to be properly perceived
in the covariance. The length of our epochs is also a
likely factor, as one second is very short to observe
meaningful information in the slow theta frequen-
cies. Additionally, lower frequencies are attenuated by
the derivative operation, likely decreasing the inform-
ation that the theta band might carry.

Using the alpha band, we observe an interest-
ing behavior: on the reference task, we are able to
reach model accuracies comparable to those we have

using all bands together (−1.99%). From literature
we know that the eyes closed and eyes open states
strongly differ in their alpha band [11, 39] mani-
festation. Hence, it makes sense that distinguishing
these two states using the alpha band is a success-
ful approach. However, we see that the perform-
ance strongly decreases when it comes to identifying
CL levels (for ‘activity presence’ task: 65.12%). This
appears to contradict literature claims, as the alpha
band’s suppression was found to be a good indic-
ator of CL [5, 39, 48]. However, the suppression of
the alpha band duringmentally demanding tasks sug-
gests that it does not contribute much to these tasks.
So while its power was observed in literature to be
indicative of CL, the actual signal and its derivat-
ive do not appear to carry much cognitive activity
information that the covariance can properly capture.
Therefore, our results are in fact coherent with liter-
ature observations.

Finally, the results we obtain using the beta band
are comparable to those obtained with features from
the signal from all bands together (for ‘activity pres-
ence’ task: −0.76% when using features from the
beta band only). This suggests that the majority of
the CL information we are able to extract using our
features comes from the beta band. This is further
enhanced by the derivative operation which emphas-
izes the high frequencies of the signal. It is also con-
sistent with literature that has shown an increased
activity in this band to be associated with a working
state and higher CL [34, 48].

Higher beta band activity has been related to
external muscular or ocular activity [42]. In our
experimentwe tried tominimizemuscular and ocular
contamination by keeping the different experimental
conditions constant in terms of movements. For all
CL tasks the subjects are asked to press one of two but-
tons (indicating if the patternmatched or not with the
pattern N steps back) and to look at the center of the
screen. Of course a particular subject can still move
more during one particular condition, but this will be
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averaged out over time and participants. In addition,
during the preprocessing steps, we did ICA and IC-
Label to detect and remove components that are not
originated in the brain.

5.3. The calibration experiment
The calibration experiment showed that 10 samples
are sufficient for accurate calibration (yellow/solid
lines in figure 8, which are the results obtained with
the MDMmodel training on RPA-mapped data).

The more distinct two CL classes are (e.g. low
versus high) themore valuable are additional samples
in the calibration data. This is expected, as more chal-
lenging tasks require more precise calibration. That
said, evenwith only 10 samples (corresponding to 10 s
of EEGdata), we are reaching close to peak accuracies.

Comparing the performance obtained with RPA
and MDM model to traditional approaches, when
including the calibration data in the training pro-
cess, shows that all classifiers (SVM, and two EEGNet
classifiers) yield poor performance that is virtually at
chance level (figure 8). This is true for all but the ref-
erence task where an improvement of around 25% is
observed with EEGNet models compared to random
accuracy. Still, these performances are much lower
that those obtained with RPA (about 20% difference)
suggesting that RPA is superior to traditional meth-
ods, when used with small calibration samples.

6. Conclusions

Our study provides experimental insight into the per-
formances and benefits of using RPA for CL predic-
tion across different subjects.

We demonstrate that generalization performance
on CL tasks significantly benefits from the rotation
RPA step. This step is used to align all subjects’ class
distributions.

Exploring a variety of new, easily computable
Riemannian features compatible with RPA, our work
shows that using the covariance of the EEG derivat-
ives yields improved performances compared to the
baseline of using the covariance of the initial sig-
nal. Using higher-order derivatives of the signal does
not further improve the performance. Also, the CL
information relevant to the classification using these
features appears to be mostly contained in the EEG
beta band.

Few samples per class—in our case 10 - are suf-
ficient to obtain nearly peak classification accur-
acy, although more samples contribute positively to
increased performance.

Finally, comparing different classification
approaches proves RPA to be superior, with the
alternatives (SVM and EEGNet) showing near chance
performance.

One limitation of our work was the choice to dis-
regard the time-series aspect of the signal in the train-
ing/testing samples, so one can estimate a potential
improvement in futurework. Implementation in real-
world environments could benefit from personalized
calibration, which will likely yield enhanced accuracy
in decoding one’s mental state. The choice to work
solely with RPA method and MDMmodels may have
caped our performance further. There exist a multi-
tude of other models working in the Riemannian or
other related spaces. It has not escaped our notice that
other methods involving Riemannian geometry can
benefit from using the features presented in this work
for the decoding of other mental states.
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